آمایش سرزمین

آمایش سرزمین گزینه ای برای افزایش پایداری توان سرزمینی است

آمایش سرزمین

آمایش سرزمین یک استراتژی برای رسیدن به توسعه ای هرچه عادلانه تر و انسانی تر است

آمایش سرزمین

در نگاه آمایشی پایداری محیط زیست و بازگشت به طبیعت اهمیت خواهد یافت

Geo-statistical modeling of mean annual rainfall over the Iran
using ECMWF database
Robab Razmi
1
• Saeed Balyani
2
• Mohammad Reza Mansouri Daneshvar3
Received: 21 February 2017 / Revised: 20 March 2017 / Accepted: 21 March 2017 / Published online: 3 April 2017
Korean Spatial Information Society 2017
AbstractIn the present study, the main aim was the spatial
evaluation annual rainfall of Iran based on the European
Centre for Medium Range Weather Forecast (ECMWF)
database. An attempt, using geo-statistical modeling by
ordinary least squares (OLS) and geographically weighted
regression (GWR) procedures, was also made. The results
represented that the GWR model with higher S
2
, lower
residuals without spatial autocorrelation effect and lower
RMSEis an optimized geo-statistical model for rainfall
modeling of Iran based on ECMWF gridded database. This
model can explain spatio-temporal rainfall distribution in
Iran in a diversified topographical and geographical background. This model revealed that two high mountain ranges
of Zagros and Alborz in west and north, respectively,
strikingly affect the temporal and spatial patterns of rainfall. Therefore, the statistical correlation matrix revealed
that Iranian rainfall data is dominantly depended on geographical latitude and topographical altitude/slope with
0.56 and 0.32 correlation coefficients, respectively.
KeywordsRainfall data Geo-statistical models
European centre for medium range weather forecas

فایل های پیوست
FileFile size
Download this file (Geo-statistical modeling of mean annual rainfall.pdf)Geo-statistical modeling of mean annual rainfall.pdf1564 kB